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Thermomechanics of isotactic 
polypropylene between -67 and +I 40°C: 
investigation of the relaxation behaviour 
based on literature data 

F.-J. Wortmann* and K. V. Schulz 
Deutsches Wollforschungsinstitut e. V., Veltmanplatz 8, D-52062 Aachen, Germany 

Faucher investigated the stress relaxation behaviour of isotactic polypropylene at temperatures between 
-67 and 140°C and found that a master curve could be formed by applying the principles for 
thermorheologically simple (TRS) materials. Since a previous investigation by the authors has shown that 
the TRS principle fails to model the viscoelastic performance of isotactic polypropylene consistently, 
Faucher’s data are reanalysed on the basis of a two-component model. Application of the model leads to a 
good fit of the experimental data. The component moduli as well as the characteristic relaxation time show 
pronounced temperature dependencies and three different transition temperatures between -27 and +28”C. 
In Arrhenius plots the parameter values follow sigmoidal curves that differ in intensity and position but 
show a similarity in their shape, indicating comparable distributions of activation energies underlying the 
transitions. The consistency of the results is checked against tan 5 data from dynamic, extensional tests. The 
diversity of the responses of the model parameters to temperature is considered as a reason for the variability 
of the glass transition temperatures measured for isotactic polypropylene using different techniques. 

(Keywords: isotactic polypropylene; stress relaxation; two-component model) 

INTRODUCTION 

To confidently apply polymeric materials for construc- 
tion purposes detailed knowledge about their viscoelastic 
long-term performance is required. The usual method to 
acquire this information is to conduct short-term 
relaxation or creep tests at various temperatures with 
subsequent superposition of the curves to form a master 
curve over an extended temperature range, from which 
long-term predictions are made. The approach where the 
curves are superimposed only by horizontal shifts along 
the log (time) axis applies for ‘thermorheologically 
simple’ (TRS) materials’ and apparently works well for 
a variety of polymers2-4, although obvious difficulties 
with this approach are observed for semicrystalline 
polymers5>6 which play an important role as construction 
polymers. 

In a previous paper7 the authors reported investiga- 
tions on the relaxation behaviour of isotactic polypro- 
pylene fibres in the temperature range -50 to +3O”C and 
at strains in the linear viscoelastic region (E < 2%). The 
results relate to the a-transition of the polymer, which 
morphologically is attributed to the restricted amor- 
phous phase in the semicrystalline material. Following 
Ferry’s8 general approach the relaxation curves were 
analysed using a two-component (TC) model, containing 
an elastic modulus and a modulus/relaxation function 
combination. Application of the TC model revealed 
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pronounced influences of the temperature on the moduli 
of the components and only moderate displacements of 
the relaxation function of the log(time) scale7. 

On conducting similar experiments on isotactic poly- 
propylene samples, Faucher’ previously found, for an 
even more extended temperature range (-67 to +14O”C), 
that his relaxation curves could be superposed by strictly 
horizontal shifts on the log(time) scale, in this represent- 
ing a TRS material. Since both analytical approaches 
cannot be equally valid for the same type of material, we 
applied the TRS principle to our relaxation curves” and 
checked the ensuing prediction for the dynamic mechan- 
ical properties, namely for tan6, against experimental 
results. The investigation showed that the TRS principle 
is only an empirically successful data reduction system 
that does not adequately model the time-temperature 
superposition for semicrystalline polypropylene. 

To finalize the check of the consistency of the analysis, 
we have taken the curves from Faucher’s paper’ and 
submitted them to an analysis using the TC model. This 
approach offers the special advantage that Faucher’s 
data, due to the nature of his specimen, cover a 
considerably larger temperature range than our previous 
investigation on polypropylene fibres7 (see Figure 2c). 
The results show that Faucher’s curves are in fact well 
described by the TC model, giving actually a nearly 
complete view of the temperature range covered by the 
a-transition of isotactic polypropylene and providing the 
basis for a new approach to the description of the 
temperature dependence of the model parameters. 
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DATA BASIS AND METHOD OF ANALYSIS 

The curves in Figure 5 of ref. 9 were digitized at 
equidistant points along the log(time) axis to give a total 
of 26 points for each curve. These were subsequently 
submitted to an analysis using the TC model, to be 
described in general terms below. More details of the 
model and a discussion of its relation to other 
approaches are given in ref. 10. Figure 1 gives a suitable 
selection of data covering the whole temperature range in 
a log(modulus) versus log(time) graph, and also shows as 
solid lines, the theoretical description by the TC model 
based on curve-specific parameter values. 

Following Ferry’s’ general approach, the relaxation 
curves are analysed using a two component (TC) model: 

E(t, T) = E,(T) + AE(T)Q(t, T) (1) 
where E,(T) and AE(T) are the temperature-depen- 
dent, limiting elastic moduli of an elastic and viscoelastic 
component, respectively. From a morphological point of 
view Em and AE are attributed to the elastic response of 
the crystalline and the amorphous phase, respectively, 
where in this special case the relaxation relates to the 
restricted amorphous materia17. @l(t) is the relaxation 
function. 

\k(ln t) is described here by using the cumulative log- 
normal distribution (CLND) function7 given for the 
natural log(time) scale by: 

Q(ln t) = l/[,/@r)z] 1:: exp{ -i [(x - lnTc)/zj’}dx 

(2) 
where ~~ is the characteristic relaxation time, In 7c the 
mean, and z the standard deviation, of the underlying 
log-normal distribution. x is the integration variable on 
the ln(time) scale. \k(ln t) forms a strictly symmetrical, 
sigmoid curve which drops from unity to zero within a 
range of approximately In 7c f 42. This type of curve is 
chosen in preference to the usually applied Kohlrausch- 
Williams-Watt function” due to its strict symmetry, 
which coincides with experimental observations by 
Kubat (e.g. see ref. 12). 

Following the concepts developed in ref. 7, the 
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Figure 1 Representative set of log(relaxation modulus) versus 
log(time) curves for the temperature range investigated by Fauche?. 
The solid lines represent the theoretical fit through the data on the basis 
of the TC model 
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constant, ‘universal’ value of z = 4.5 is introduced to 
describe the shape of the relaxation function. This 
restriction implies that a change in temperature affects 
all relaxation times in a way described by a temperature- 
dependent, multiplicative factor. This concept is also 
inherent to the theory of thermorheologically simple 
materials’ and leads to a simplification of equation (1) 
as: 

E(t, T) = E,(T) + AE(T)@(t/ar) (3) 

where aT is the acceleration factor, or as log aT referred 
to as the shift factor, and is given by: 

aT = Tc(T)/T: (4) 

where 7,” is the characteristic relaxation time at the 
reference temperature. ar is larger than unity for 
decelerated processes below, and smaller than unity for 
accelerated relaxations above the reference temperature. 
Log ar consequently describes the displacement of the 
relaxation function on the log(time) scale to shorter 
times with increasing temperature. 

In deviation from the fitting procedure described in 
detail in refs 7 and 13, using a weighted linear regression 
procedure, the combined equations (2) and (3) were 
directly fitted to the experimental data. We used the tanh 
approximation for 9(ln t) given in ref. 14, applied a 
least-squares criterion and made use of the non-linear 
optimization routine implemented in the spreadsheet 
program Quattro Pro (Borland). 

Fitting the TC model to the individual relaxation 
curves given by Faucher in Figure 5 of ref. 9 for isotactic 
polypropylene specimens, the values for E,, AE and log 
7c were determined for 18 temperatures between -67 and 
140°C. 

RESULTS AND DISCUSSION 

The coincidence of the data points and the solid lines in 
Figure 1 shows that the TC model leads to a good 
description of Faucher’s relaxation curves. 

Figure 2 summarizes the results for the model 
parameters in Arrhenius plots, to enable direct compar- 
ison with the results given in ref. 7. Following the line of 
reasoning of ref. 7, the temperature dependence of Em is 
well described by a straight line in the Arrhenius plot 
over the whole temperature range (coefficient of 
determination r2 = 0.93, see Figure 2A). From the 
slope of the line the activation energy is calculated as 
EA = -12 f 1.8 kJmol_’ (95% confidence limits), in 
excellent agreement with the results of our previous 
investigation (EA = - 13 A 1.9 kJ mall’, ref. 7). In 
Figure 2C the temperature range investigated in ref. 7 
is marked to indicate the increase in data range for which 
the initially proposed Arrhenius relationship for Em still 
appears to be valid. 

The values for AE reveal in Arrhenius plots (see Figure 
2B) a similar behaviour as already observed for the 
fibres7. At low temperatures the values lie in an upper 
plateau range of log AE = 8.9 f 0.09 which is equivalent 
to AE = 0.81 GPa. At l/T = 3.32 x 10e3 K-l, equiva- 
lent to 28°C a transition point is reached below which 
log AE vecw l/T decreases along a straight line. For this 
line the same slope can be applied as for log E, (see 
Figure 2A), so that again’ equal activation energies are 
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Figure 2 Values of the parameters of the TC model in Arrhenius 
diagrams with straight lines fitted through the data. Outliers are given 
as O. The bar above the x-axis in (C) marks the temperature range 
investigated in ref. 7. The transition temperatures for AE and for rc are 
indicated 

observed above the transition for the temperature 
dependencies of AE and E,. 

Log 7c shows a similar behaviour to AE. At low 
temperatures an upper plateau value of 2.7 f 0.61 
(M 560s) is observed, which, below the transition point 
at 3.57 x 10e3 K-t, that is above 7°C decreases linear1 

Y with a slope equivalent to EA = -40 f 17 kJmol_ . 
The value for the upper plateau value for log TV as 
well as its activation energy are in satisfactory 
agreement with the previous results (log TV = 2.6 f 0.2, 
EA = -31 i 13 kJ mall’ , ref. 7). The activation energies 
are for all parameters much smaller than those estimated 
on the basis of the TRS model (150 f 20 kJ mol-’ , ref. 
10) and those given in the literature for log ar (117 to 
152kJmoll’, ref. 15). 

The range of & values covering about 1.5 decad?s 
around 10 Pa is comparable to that for the fibres . 
However, the upper plateau value for AE, 0.81 GPa, is 
considerably smaller than that previously found7 
(2.45 GPa); this may be attributed to a higher degree of 
crystallinity in Faucher’s bulk samples compared with 
the fibres, which consequently lowers AE as the 
contribution of the amorphous component. This differ- 
ence between the two types of sample coincides with the 
comparatively high transition temperatures for 
Faucher’s polypropylene, namely for AE (28°C 

compared with -7°C for the fibres’) and for log ~~ 
(7°C compared with -17°C ref. 7). 

It is interesting to note that for both types of material 
the transition temperature for AE is roughly lo-20°C 
higher than that for log To, despite the data scatter, so 
that a genuine difference between the two transition 
temperatures can be assumed, in this modifying the view 
expressed in ref. 7. Above 30°C all parameters are 
beyond their transition and decrease rapidly with 
temperature. This threshold agrees well with the 
temperature at which Struik16 observed a change in the 
type of creep behaviour for polypropylene. 

It follows from equation (3) that due to the 
temperature dependencies of E, and AE, a master 
curve in the classical sense-that is by purely horizontal 
superposition on the log t scale-can only be realized for 
the relaxation function alone, which is given by: 

*(t/+1 = [E(tl a~, T) - E,(VlIAE(T) (5) 
The superposition of the q( t, T) data curves is realized in 
Figure 3 for a reference temperature of 20°C and for the 
cases in Figure 1 that cover the whole temperature range. 
The data points show good coincidence. 

These results hence show that, as an alternative to the 
TRS method, Faucher’s data can consistently be 
analysed using the TC model, yielding similar tempera- 
ture dependencies of the model parameters as for the 
fibres7. The observed differences can be plausibly 
interpreted in terms of the structural differences of the 
materials. 

To check the consistency of the approach, a dynamic 
mechanical property, namely tan S, is calculated from the 
individual static relaxation curves the 
approximation16: 

using 

tan6(w) = -7r/2 dlog[E(t)]/dlog(t)(,=tl, (6) 

where w is the frequency. 
Figure 4 gives the tan 6 values determined experi- 

mentally7 for the fibres at a frequency of 2Hz (0). The 
curve shows two maxima of similar shape and intensity 
at N -5 and N 70°C that are attributed to transitions of 
the amorphous (B-transition) and restricted amorphous 
(a-transition) phase in the materia15’7.‘7, respectively. 

06 

O!- 

K- 

-. 
0.. 

0 
Q........ 

0 1 2 3 L 5 6 7 8 
w 

log(t/a,~l~t’l, t’=1s 

Figure 3 Master curve for the relaxation function, calculated from the 
data in Figure I according to equation (5), and for a reference 
temperature of 20°C. The data for the reference curve are given as + 
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Figure 4 Tan 6 data for the fibres at 2 Hz (0) and as obtained from the 
static relaxation curves (0) (for details see ref. 7). The arrow marks the 
minimum in tan 6 between the o- and the /?-transition at 39°C. The solid 
curve (-) gives the Lorentzian distribution for the a-relaxation peak 
with the parameter values given in Table 2 

Figures 5A and B give as data points the tan S values 
based on the individual, experimental parameter combi- 
nations of the TC model and calculated on this basis 
according to equation (6). 

The solid line through the data in Figure 5A gives the 
tan 6 values calculated by introducing the theoretical 
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Figure 5 tan 6 versus temperature (0) derived v-ia equation (9 for .a 
frequency of 2Hz from the fit of the TC model to Faucher’s stattc 
relaxation curves. The solid lines are the theoretical curves derived on 
the basis of the straight-line fits in Figure 2 (A) and of the sigmoid fits in 
Figure 6 (B), respectively (see text) 

parameter values from the Arrnehius plots in Figure 2. 
The results show that this approach gives a seemingly 
adequate description of the data. It would predict an 
onset for the tan 6 increase around 0°C and a continuous, 
slightly curved shape for the whole temperature range up 
to 200°C. This is certainly well beyond that point where a 
peak has to be expected from the experimental data in 
Figure 2 and from the literature data in general”. 
However, the scatter of the data does not allow a 
decision on the true shape of the tan S curve at the higher 
temperature end. 

The shortcoming of this parameter description to 
model a tan 6 peak and to predict instead a continuous 
increase of tan S even for unrealistically high tempera- 
tures, can be attributed to the large decrease predicted 
from the straight-line Arrhenius plots (see Figure 2) for 
the moduli and for the characteristic relaxation time at 
the high temperature end. This effect limits the plausi- 
bility of this parameter description to the region around 
the onset temperature for tan S (Figure 5A). 

A further refinement of the parameter description is 
based on the assumption that the initial descriptions in 
Arrhenius plots, using upper plateaux below and 
straight-line relationships above the transition tempera- 
ture, is necessarily only an approximation for the real 
situation. A more realistic approach would imply that all 
three parameters undergo smooth, finite changes from an 
upper to a lower plateau value that start at their 
respective transition temperatures. This view agrees, for 
temperatures above the glass transition, with the general 
shapes of the Vogel-Fulcher’9>20 or Williams-Landel- 
Ferry21 equations. The overall change is here assumed to 
be sigmoidal. 

Applying the fitting procedures implemented in Table- 
Curve (Jandel Scientific), sigmoid curves given by: 

y=a+6/{1+ exp[-(x - c)ldl) (7) 
were fitted to the parameter values. y is the logarithm of 
the parameter of the TC model under consideration and 
x = l/T x lo3 K. The parameters a and b in equation (7) 
give the lower level and the intensity of the process, 
respectively, so that the upper, low temperature level is 
given by (a + b). c gives the position of the turnover point 
of the curve and d describes its width. The results of these 
fits are graphically summarized in Figures 6A-C. The 
parameters for the fits are given in Table 1 together with 
their 95% confidence limits. 

The results in Table 1 show the intensity of the change 
of Em with tern erature, dropping from the upper 
plateau of 10 ‘: (7.9+ ,6) Pa = 3.2 GPa by 1.6 decades to 
107.9 = 79MPa with a turnover point for the sigmoid 
curve at 30°C. The onset of the transition is estimated 
from Figure 6A at l/T = 4.1 x 1O-3 K-‘, equivalent to 
-27°C. 

Log AE shows a transition for which the intensity, 
given by an unrestricted fit of the sigmoid curve to the 
data, is not well defined, yielding an unrealistically high 
value of b = 44.3. A generally high intensity for the 
change in AE can be expected in view of the modulus or 
compliance changes at the glass transition for amor- 
phous polypropylene22 and for amorphous polymers in 
general. This is usually the order of 3-4 decades3Y4,8. To 
stabilize the performance of the fit of the sigmoid curve 
to the data for log AE in Figure 6B, a restriction for the 
intensity to four decades (b = 4) was hence introduced. 
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Figure 6 Values of the parameters of the TC model in Arrhenius 
diagrams. Sigmoid curves are fitted through the data for which the 
parameter values are given in Table 1. A data point considered as 
outlier is given as O. The arrow in (A) indicates the estimated transition 
temperature for E, 

The results are given in Table I. In view of the quality 
of the fit, it is important to note that the introduction 
of the restriction has only marginal influence on the 
form of the curve within the data range. On the basis 
of this fit, AE drops from an upper plateau value of 
10(4.9+4) Pa M 800 MPa to 104.9 Pa M 80 kPa. 

The sigmoid curve fit for log rc in Figure 6C basically 

Table 1 Parameters for the sigmoid curves [equation (7)] fitted to E,, 
AE and r,, respectively, in the Arrhenius plots in Figure 6. For the 
meaning of the parameters and for the restriction of the fit for log AE, 
see text. i-2 = Coefficient of determination, ul = upper 95% confidence 
limit, 1 1 = lower 95% confidence limit 

Parameter 
1% Em 
r* = 0.95 

log AE 
r2 = 0.81 

log r, 
r2 = 0.75 

ul 8.5 
a 7.9 4.9 

11 7.3 
ul 2.6 

b 1.6 4 
11 0.7 
ul 3.7 

c 3.3 2.0 
11 2.9 
ul 0.9 

d 0.5 0.3 
11 0.1 I - 

5.1 3.2 
-0.8 

4.8 -4.7 
_ 7.9 

3.6 
_ -0.7 
2.3 3.5 

2.9 
1.6 2.2 
0.6 

0.2 
0.1 

0.7 

-0.2 

models in a smooth way the results already obtained by 
the straight-line fits for the upper part of the transition 
(see Figure 2B). The sigmoid fit predicts a characteristic 
relaxation time of lo-O.8 s x 0.2 s for conditions relating 
to the lower plateau, that is for the high temperature end 
of the transition. In view of the confidence limits (see 
Table 1) this prediction is in satisfactory agreement with 
the value of log ;5 g 1.8 determined for the fibres at 
room temperature ’ . 

The estimates for the TC model parameters were taken 
from the sigmoid fits and introduced via equations (3) 
and (2) into equation (6). Figure 5B again gives the tan S 
values derived from the experimental curves as data 
points and the solid line the theoretical values based on 
the sigmoid curve fits. A good fit to the data points is 
achieved, modelling a tan S peak at 125°C. The intensity 
of the peak (= 0.11) is in good agreement with the peak 
maximum for the fibres (M 0.12, see Figure 4) and with 
literature data’*. 

Though it is generally realized that the peak in tan S 
does not signify a glass transition in a rigorous sense, it is 
nonetheless often used for this purpose24. For the present 
case of isotactic, semicrystalline polypropylene, none of 
the transition temperatures for the parameters of the TC 
model (Em, -27°C; AE, 28°C; log T,, 7°C) is related to 
the position of the a-transition peak for tan S in Figure 
.5B (125°C). The peak thus does not signify a transition 
but only a combination of specific changes in the moduli 
and the characteristic relaxation time that lead to a 
maximum at a temperature that is in no obvious way 
related to the transition temperatures of the material. 

To further emphasize the agreement between the 
double peak in the experimental data and the single 
peak derived from Faucher’s data’ for the static 
relaxation experiment, Sigma Plot (Jandel Scientific) 
was used to determine that the peak in Figure 5B is best 
described by a Lorentzian distribution given by: 

Y = e +fl{l + 1(x -d/42) (8) 
where y = tan6 x lo3 and x = T/“C. The parameters e 
and f give the baseline level and the peak intensity, 
respectively, while g describes the peak position and h 
defines its width. The values for the parameters and their 
95% confidence limits are given in Table 2. 

To further the comparison the tan S values for the 
dynamic mechanical experiment were taken for tempera- 
tures above the minimum between the (Y- and the p- 
process (39°C indicated by the arrow in Figure 4) and 
combined with the tan S data derived from the static 
relaxation curves for the fibres7 (o in Figure 4). To this 
data pool a Lorentzian peak was fitted, given by the solid 
line through the a-transition data in Figure 4, for which 
the parameter values are given in Table 2. 

Figure 4 shows that the data are well described by the 
Lorentzian distribution. The comparison of the para- 
meter values in Table 2 with respect to intensity (f) and 
width (h) furthermore shows that the peak shapes and 
intensities are in good agreement for the two cases (see 
Figures 4 and 5B). This leads us to conclude that the 
description of the tan 6 data derived from Faucher’s data 
is consistent with the experimental evidence, and that 
thus the general sigmoid description of the parameters of 
the TC model in Arrhenius plots exhibits a high degree of 
plausibility. 
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Table 2 Parameter values for the Lorentzian distributions [equation 
(8)] fitted to tan 6 data in Figure 4 (solid line) and Figure 5B with their 
confidence limits. Due to the virtual coincidence of the distribution and 
the tan 6 curve in Figure 58 over most of the data range, no separate 
curve is given in this case. Definitions for r’, ul and 11 as in Table I 

Parameter 

Ul 
e 

I1 
Ul 

f 
11 
ul 

g 
II 
ul 

h 
11 

Figure 4 
r* = 0.93 

6.6 

102.5 

72.4 

48.5 

15.7 

-2.5 
111.1 

93.9 
76.1 

68.8 
51.7 

39.2 

Figure 5B 
r2 = 0.99 

3.2 
-1.4 

-6.1 

125.9 
119.8 

113.7 
116.5 

118.8 
121.0 
57.0 

51.7 
46.4 

CONCLUSIONS 

The objective of this investigation was to solve the 
contradiction between the seemingly successful applica- 
tion of the TRS principle for polypropylene by Faucher’ 
and our observation of the lack of validity of the TRS 
principle for this material’. It is shown that Faucher’s 
data are in fact well described by the alternative TC 
model, leading to estimates for the dynamic mechanical 
properties that go beyond the previously considered 
temperature range and are in good agreement with 
experiments. 

The analysis of the results indicates furthermore that 
the three parameters of the TC model-namely E, and 
AE, considered as the elastic moduli of the crystalline 
and the restricted, amorphous fraction, respectively, and 
log Tc--have distinctly different transition temperatures 
in the range between -27 to 28°C. This can be related to 
the concept of multiple glass transitions in semicrystal- 
line polymers25. The diversity of the responses to 
temperature may be considered as the reason for the 
variability of the glass transition temperatures measured 
for isotactic, semicr~;talline polypropylene when using 
different techniques and as one source of the con- 

troversy over the transition temperatures of semicrystal- 
line polymers in general (e.g. ref. 25). 
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